tantivy-py/src/query.rs

413 lines
13 KiB
Rust
Raw Normal View History

use crate::{
get_field, make_term, make_term_for_type, schema::FieldType, to_pyerr,
DocAddress, Schema,
};
use core::ops::Bound as OpsBound;
2024-04-22 23:36:48 +00:00
use pyo3::{
exceptions,
prelude::*,
types::{PyAny, PyFloat, PyString, PyTuple},
2024-04-22 23:36:48 +00:00
};
use tantivy as tv;
/// Custom Tuple struct to represent a pair of Occur and Query
/// for the BooleanQuery
struct OccurQueryPair(Occur, Query);
2024-04-22 23:36:48 +00:00
impl<'source> FromPyObject<'source> for OccurQueryPair {
fn extract(ob: &'source PyAny) -> PyResult<Self> {
let tuple = ob.downcast::<PyTuple>()?;
let occur = tuple.get_item(0)?.extract()?;
let query = tuple.get_item(1)?.extract()?;
Ok(OccurQueryPair(occur, query))
}
}
/// Tantivy's Occur
#[pyclass(frozen, module = "tantivy.tantivy")]
#[derive(Clone)]
pub enum Occur {
Must,
Should,
MustNot,
}
impl From<Occur> for tv::query::Occur {
fn from(occur: Occur) -> tv::query::Occur {
match occur {
Occur::Must => tv::query::Occur::Must,
Occur::Should => tv::query::Occur::Should,
Occur::MustNot => tv::query::Occur::MustNot,
}
}
}
/// Tantivy's Query
2024-01-21 20:16:34 +00:00
#[pyclass(frozen, module = "tantivy.tantivy")]
pub(crate) struct Query {
pub(crate) inner: Box<dyn tv::query::Query>,
}
impl Clone for Query {
fn clone(&self) -> Self {
Query {
inner: self.inner.box_clone(),
}
}
}
impl Query {
pub(crate) fn get(&self) -> &dyn tv::query::Query {
&self.inner
}
}
2022-04-15 03:50:37 +00:00
#[pymethods]
impl Query {
2019-08-02 11:23:10 +00:00
fn __repr__(&self) -> PyResult<String> {
Ok(format!("Query({:?})", self.get()))
}
2023-12-20 09:40:50 +00:00
/// Construct a Tantivy's TermQuery
#[staticmethod]
#[pyo3(signature = (schema, field_name, field_value, index_option = "position"))]
pub(crate) fn term_query(
schema: &Schema,
field_name: &str,
2024-05-07 14:36:46 +00:00
field_value: &Bound<PyAny>,
2023-12-20 09:40:50 +00:00
index_option: &str,
) -> PyResult<Query> {
let term = make_term(&schema.inner, field_name, field_value)?;
let index_option = match index_option {
"position" => tv::schema::IndexRecordOption::WithFreqsAndPositions,
"freq" => tv::schema::IndexRecordOption::WithFreqs,
"basic" => tv::schema::IndexRecordOption::Basic,
_ => return Err(exceptions::PyValueError::new_err(
"Invalid index option, valid choices are: 'basic', 'freq' and 'position'"
))
};
let inner = tv::query::TermQuery::new(term, index_option);
Ok(Query {
inner: Box::new(inner),
})
}
2024-03-31 11:56:22 +00:00
2024-04-26 11:21:46 +00:00
/// Construct a Tantivy's TermSetQuery
#[staticmethod]
#[pyo3(signature = (schema, field_name, field_values))]
pub(crate) fn term_set_query(
schema: &Schema,
field_name: &str,
2024-05-07 14:36:46 +00:00
field_values: Vec<Bound<PyAny>>,
2024-04-26 11:21:46 +00:00
) -> PyResult<Query> {
let terms = field_values
.into_iter()
.map(|field_value| {
2024-05-07 14:36:46 +00:00
make_term(&schema.inner, field_name, &field_value)
2024-04-26 11:21:46 +00:00
})
.collect::<Result<Vec<_>, _>>()?;
let inner = tv::query::TermSetQuery::new(terms);
Ok(Query {
inner: Box::new(inner),
})
}
2024-03-31 11:56:22 +00:00
/// Construct a Tantivy's AllQuery
#[staticmethod]
pub(crate) fn all_query() -> PyResult<Query> {
let inner = tv::query::AllQuery {};
Ok(Query {
inner: Box::new(inner),
})
}
2024-04-13 09:14:56 +00:00
/// Construct a Tantivy's FuzzyTermQuery
///
/// # Arguments
///
/// * `schema` - Schema of the target index.
/// * `field_name` - Field name to be searched.
/// * `text` - String representation of the query term.
/// * `distance` - (Optional) Edit distance you are going to alow. When not specified, the default is 1.
/// * `transposition_cost_one` - (Optional) If true, a transposition (swapping) cost will be 1; otherwise it will be 2. When not specified, the default is true.
/// * `prefix` - (Optional) If true, prefix levenshtein distance is applied. When not specified, the default is false.
2024-04-13 09:14:56 +00:00
#[staticmethod]
#[pyo3(signature = (schema, field_name, text, distance = 1, transposition_cost_one = true, prefix = false))]
pub(crate) fn fuzzy_term_query(
schema: &Schema,
field_name: &str,
2024-05-07 14:36:46 +00:00
text: &Bound<PyString>,
2024-04-13 09:14:56 +00:00
distance: u8,
transposition_cost_one: bool,
prefix: bool,
) -> PyResult<Query> {
let term = make_term(&schema.inner, field_name, text)?;
2024-04-13 09:14:56 +00:00
let inner = if prefix {
tv::query::FuzzyTermQuery::new_prefix(
term,
distance,
transposition_cost_one,
)
} else {
tv::query::FuzzyTermQuery::new(
term,
distance,
transposition_cost_one,
)
};
Ok(Query {
inner: Box::new(inner),
})
}
2024-05-03 20:10:58 +00:00
/// Construct a Tantivy's PhraseQuery with custom offsets and slop
///
/// # Arguments
///
/// * `schema` - Schema of the target index.
/// * `field_name` - Field name to be searched.
/// * `words` - Word list that constructs the phrase. A word can be a term text or a pair of term text and its offset in the phrase.
/// * `slop` - (Optional) The number of gaps permitted between the words in the query phrase. Default is 0.
#[staticmethod]
#[pyo3(signature = (schema, field_name, words, slop = 0))]
pub(crate) fn phrase_query(
schema: &Schema,
field_name: &str,
2024-05-07 14:36:46 +00:00
words: Vec<Bound<PyAny>>,
2024-05-03 20:10:58 +00:00
slop: u32,
) -> PyResult<Query> {
let mut terms_with_offset = Vec::with_capacity(words.len());
for (idx, word) in words.into_iter().enumerate() {
if let Ok((offset, value)) = word.extract() {
// Custom offset is provided.
2024-05-07 14:36:46 +00:00
let term = make_term(&schema.inner, field_name, &value)?;
2024-05-03 20:10:58 +00:00
terms_with_offset.push((offset, term));
} else {
// Custom offset is not provided. Use the list index as the offset.
2024-05-07 14:36:46 +00:00
let term = make_term(&schema.inner, field_name, &word)?;
2024-05-03 20:10:58 +00:00
terms_with_offset.push((idx, term));
};
}
if terms_with_offset.is_empty() {
return Err(exceptions::PyValueError::new_err(
"words must not be empty.",
));
}
let inner = tv::query::PhraseQuery::new_with_offset_and_slop(
terms_with_offset,
slop,
);
Ok(Query {
inner: Box::new(inner),
})
}
2024-04-28 10:54:21 +00:00
/// Construct a Tantivy's BooleanQuery
#[staticmethod]
#[pyo3(signature = (subqueries))]
pub(crate) fn boolean_query(
2024-04-22 23:36:48 +00:00
subqueries: Vec<(Occur, Query)>,
) -> PyResult<Query> {
let dyn_subqueries = subqueries
.into_iter()
.map(|(occur, query)| (occur.into(), query.inner.box_clone()))
.collect::<Vec<_>>();
2024-04-22 23:36:48 +00:00
let inner = tv::query::BooleanQuery::from(dyn_subqueries);
Ok(Query {
inner: Box::new(inner),
})
}
/// Construct a Tantivy's DisjunctionMaxQuery
#[staticmethod]
pub(crate) fn disjunction_max_query(
subqueries: Vec<Query>,
2024-05-07 14:36:46 +00:00
tie_breaker: Option<Bound<PyFloat>>,
) -> PyResult<Query> {
let inner_queries: Vec<Box<dyn tv::query::Query>> = subqueries
.iter()
.map(|query| query.inner.box_clone())
.collect();
let dismax_query = if let Some(tie_breaker) = tie_breaker {
tv::query::DisjunctionMaxQuery::with_tie_breaker(
inner_queries,
tie_breaker.extract::<f32>()?,
)
} else {
tv::query::DisjunctionMaxQuery::new(inner_queries)
};
Ok(Query {
inner: Box::new(dismax_query),
})
}
2024-04-24 21:57:16 +00:00
2024-04-28 10:54:21 +00:00
/// Construct a Tantivy's BoostQuery
2024-04-24 21:57:16 +00:00
#[staticmethod]
#[pyo3(signature = (query, boost))]
pub(crate) fn boost_query(query: Query, boost: f32) -> PyResult<Query> {
let inner = tv::query::BoostQuery::new(query.inner, boost);
Ok(Query {
inner: Box::new(inner),
})
}
2024-04-28 10:54:21 +00:00
/// Construct a Tantivy's RegexQuery
#[staticmethod]
#[pyo3(signature = (schema, field_name, regex_pattern))]
pub(crate) fn regex_query(
schema: &Schema,
field_name: &str,
regex_pattern: &str,
) -> PyResult<Query> {
let field = get_field(&schema.inner, field_name)?;
let inner_result =
tv::query::RegexQuery::from_pattern(regex_pattern, field);
match inner_result {
Ok(inner) => Ok(Query {
inner: Box::new(inner),
}),
Err(e) => Err(to_pyerr(e)),
}
}
2024-04-28 10:54:21 +00:00
#[staticmethod]
#[pyo3(signature = (doc_address, min_doc_frequency = Some(5), max_doc_frequency = None, min_term_frequency = Some(2), max_query_terms = Some(25), min_word_length = None, max_word_length = None, boost_factor = Some(1.0), stop_words = vec![]))]
#[allow(clippy::too_many_arguments)]
pub(crate) fn more_like_this_query(
doc_address: &DocAddress,
min_doc_frequency: Option<u64>,
max_doc_frequency: Option<u64>,
min_term_frequency: Option<usize>,
max_query_terms: Option<usize>,
min_word_length: Option<usize>,
max_word_length: Option<usize>,
boost_factor: Option<f32>,
stop_words: Vec<String>,
) -> PyResult<Query> {
let mut builder = tv::query::MoreLikeThisQuery::builder();
if let Some(value) = min_doc_frequency {
builder = builder.with_min_doc_frequency(value);
}
if let Some(value) = max_doc_frequency {
builder = builder.with_max_doc_frequency(value);
}
if let Some(value) = min_term_frequency {
builder = builder.with_min_term_frequency(value);
}
if let Some(value) = max_query_terms {
builder = builder.with_max_query_terms(value);
}
if let Some(value) = min_word_length {
builder = builder.with_min_word_length(value);
}
if let Some(value) = max_word_length {
builder = builder.with_max_word_length(value);
}
if let Some(value) = boost_factor {
builder = builder.with_boost_factor(value);
}
builder = builder.with_stop_words(stop_words);
let inner = builder.with_document(tv::DocAddress::from(doc_address));
Ok(Query {
inner: Box::new(inner),
})
}
2024-04-28 10:54:21 +00:00
/// Construct a Tantivy's ConstScoreQuery
#[staticmethod]
#[pyo3(signature = (query, score))]
pub(crate) fn const_score_query(
query: Query,
score: f32,
) -> PyResult<Query> {
let inner = tv::query::ConstScoreQuery::new(query.inner, score);
Ok(Query {
inner: Box::new(inner),
})
}
#[staticmethod]
#[pyo3(signature = (schema, field_name, field_type, lower_bound, upper_bound, include_lower = true, include_upper = true))]
pub(crate) fn range_query(
schema: &Schema,
field_name: &str,
field_type: FieldType,
lower_bound: &Bound<PyAny>,
upper_bound: &Bound<PyAny>,
include_lower: bool,
include_upper: bool,
) -> PyResult<Query> {
match field_type {
FieldType::Text => {
return Err(exceptions::PyValueError::new_err(
"Text fields are not supported for range queries.",
))
}
FieldType::Boolean => {
return Err(exceptions::PyValueError::new_err(
"Boolean fields are not supported for range queries.",
))
}
FieldType::Facet => {
return Err(exceptions::PyValueError::new_err(
"Facet fields are not supported for range queries.",
))
}
FieldType::Bytes => {
return Err(exceptions::PyValueError::new_err(
"Bytes fields are not supported for range queries.",
))
}
FieldType::Json => {
return Err(exceptions::PyValueError::new_err(
"Json fields are not supported for range queries.",
))
}
_ => {}
}
let lower_bound_term = make_term_for_type(
&schema.inner,
field_name,
field_type.clone(),
lower_bound,
)?;
let upper_bound_term = make_term_for_type(
&schema.inner,
field_name,
field_type.clone(),
upper_bound,
)?;
let lower_bound = if include_lower {
OpsBound::Included(lower_bound_term)
} else {
OpsBound::Excluded(lower_bound_term)
};
let upper_bound = if include_upper {
OpsBound::Included(upper_bound_term)
} else {
OpsBound::Excluded(upper_bound_term)
};
let inner = tv::query::RangeQuery::new_term_bounds(
field_name.to_string(),
field_type.into(),
&lower_bound,
&upper_bound,
);
Ok(Query {
inner: Box::new(inner),
})
}
}