tantivy-py/src/document.rs

591 lines
19 KiB
Rust
Raw Normal View History

#![allow(clippy::new_ret_no_self)]
2019-08-02 11:23:10 +00:00
#![allow(clippy::wrong_self_convention)]
2019-08-02 11:23:10 +00:00
use itertools::Itertools;
2020-09-20 08:19:29 +00:00
use pyo3::{
basic::CompareOp,
2020-09-20 08:19:29 +00:00
prelude::*,
types::{
PyAny, PyDateAccess, PyDateTime, PyDict, PyList, PyTimeAccess, PyTuple,
},
};
use chrono::{offset::TimeZone, NaiveDateTime, Utc};
use tantivy as tv;
use crate::{facet::Facet, schema::Schema, to_pyerr};
2022-04-15 03:50:37 +00:00
use serde_json::Value as JsonValue;
use std::{
collections::{BTreeMap, HashMap},
fmt,
};
2019-08-02 11:23:10 +00:00
use tantivy::schema::Value;
2023-08-04 15:19:39 +00:00
pub(crate) fn extract_value(any: &PyAny) -> PyResult<Value> {
if let Ok(s) = any.extract::<String>() {
return Ok(Value::Str(s));
}
if let Ok(num) = any.extract::<i64>() {
return Ok(Value::I64(num));
}
if let Ok(num) = any.extract::<f64>() {
return Ok(Value::F64(num));
}
if let Ok(datetime) = any.extract::<NaiveDateTime>() {
return Ok(Value::Date(tv::DateTime::from_timestamp_secs(
datetime.timestamp(),
)));
}
if let Ok(facet) = any.extract::<Facet>() {
return Ok(Value::Facet(facet.inner));
}
if let Ok(b) = any.extract::<Vec<u8>>() {
return Ok(Value::Bytes(b));
}
Err(to_pyerr(format!("Value unsupported {any:?}")))
}
pub(crate) fn extract_value_for_type(
any: &PyAny,
tv_type: tv::schema::Type,
field_name: &str,
) -> PyResult<Value> {
// Helper function to create `PyErr`s returned by this function.
fn to_pyerr_for_type<'a, E: std::error::Error>(
type_name: &'a str,
field_name: &'a str,
any: &'a PyAny,
) -> impl Fn(E) -> PyErr + 'a {
move |_| {
to_pyerr(format!(
"Expected {} type for field {}, got {:?}",
type_name, field_name, any
))
}
}
let value = match tv_type {
tv::schema::Type::Str => Value::Str(
any.extract::<String>()
.map_err(to_pyerr_for_type("Str", field_name, any))?,
),
tv::schema::Type::U64 => Value::U64(
any.extract::<u64>()
.map_err(to_pyerr_for_type("U64", field_name, any))?,
),
tv::schema::Type::I64 => Value::I64(
any.extract::<i64>()
.map_err(to_pyerr_for_type("I64", field_name, any))?,
),
tv::schema::Type::F64 => Value::F64(
any.extract::<f64>()
.map_err(to_pyerr_for_type("F64", field_name, any))?,
),
tv::schema::Type::Date => {
let datetime = any
.extract::<NaiveDateTime>()
.map_err(to_pyerr_for_type("DateTime", field_name, any))?;
Value::Date(tv::DateTime::from_timestamp_secs(datetime.timestamp()))
}
tv::schema::Type::Facet => Value::Facet(
any.extract::<Facet>()
.map_err(to_pyerr_for_type("Facet", field_name, any))?
.inner,
),
_ => return Err(to_pyerr(format!("Value unsupported {:?}", any))),
};
Ok(value)
}
fn extract_value_single_or_list(any: &PyAny) -> PyResult<Vec<Value>> {
if let Ok(values) = any.downcast::<PyList>() {
values.iter().map(extract_value).collect()
} else {
Ok(vec![extract_value(any)?])
}
}
fn extract_value_single_or_list_for_type(
any: &PyAny,
field_type: &tv::schema::FieldType,
field_name: &str,
) -> PyResult<Vec<Value>> {
// Check if a numeric fast field supports multivalues.
if let Ok(values) = any.downcast::<PyList>() {
values
.iter()
.map(|any| {
extract_value_for_type(any, field_type.value_type(), field_name)
})
.collect()
} else {
Ok(vec![extract_value_for_type(
any,
field_type.value_type(),
field_name,
)?])
}
}
2022-04-15 03:50:37 +00:00
fn value_to_object(val: &JsonValue, py: Python<'_>) -> PyObject {
match val {
JsonValue::Null => py.None(),
JsonValue::Bool(b) => b.to_object(py),
JsonValue::Number(n) => match n {
n if n.is_i64() => n.as_i64().to_object(py),
n if n.is_u64() => n.as_u64().to_object(py),
n if n.is_f64() => n.as_f64().to_object(py),
_ => panic!("number too large"),
},
JsonValue::String(s) => s.to_object(py),
JsonValue::Array(v) => {
let inner: Vec<_> =
v.iter().map(|x| value_to_object(x, py)).collect();
inner.to_object(py)
}
JsonValue::Object(m) => {
let inner: HashMap<_, _> =
m.iter().map(|(k, v)| (k, value_to_object(v, py))).collect();
inner.to_object(py)
}
}
}
2019-08-02 11:23:10 +00:00
fn value_to_py(py: Python, value: &Value) -> PyResult<PyObject> {
Ok(match value {
2019-10-01 16:32:06 +00:00
Value::Str(text) => text.into_py(py),
Value::U64(num) => (*num).into_py(py),
Value::I64(num) => (*num).into_py(py),
Value::F64(num) => (*num).into_py(py),
2019-08-02 11:23:10 +00:00
Value::Bytes(b) => b.to_object(py),
2020-01-05 11:39:10 +00:00
Value::PreTokStr(_pretoken) => {
2019-12-17 14:23:53 +00:00
// TODO implement me
unimplemented!();
}
Value::Date(d) => {
let utc = d.into_utc();
PyDateTime::new(
py,
utc.year(),
utc.month() as u8,
utc.day(),
utc.hour(),
utc.minute(),
utc.second(),
utc.microsecond(),
None,
)?
.into_py(py)
}
2019-10-01 16:32:06 +00:00
Value::Facet(f) => Facet { inner: f.clone() }.into_py(py),
2022-04-15 03:50:37 +00:00
Value::JsonObject(json_object) => {
let inner: HashMap<_, _> = json_object
.iter()
.map(|(k, v)| (k, value_to_object(v, py)))
2022-04-15 03:50:37 +00:00
.collect();
inner.to_object(py)
}
Value::Bool(b) => b.into_py(py),
Value::IpAddr(i) => (*i).to_string().into_py(py),
2019-08-02 11:23:10 +00:00
})
}
fn value_to_string(value: &Value) -> String {
match value {
Value::Str(text) => text.clone(),
Value::U64(num) => format!("{num}"),
Value::I64(num) => format!("{num}"),
Value::F64(num) => format!("{num}"),
Value::Bytes(bytes) => format!("{bytes:?}"),
Value::Date(d) => format!("{d:?}"),
2019-08-02 11:23:10 +00:00
Value::Facet(facet) => facet.to_string(),
2020-01-05 11:39:10 +00:00
Value::PreTokStr(_pretok) => {
2019-12-17 14:23:53 +00:00
// TODO implement me
unimplemented!();
}
2022-04-15 03:50:37 +00:00
Value::JsonObject(json_object) => {
serde_json::to_string(&json_object).unwrap()
}
Value::Bool(b) => format!("{b}"),
Value::IpAddr(i) => format!("{}", *i),
2019-08-02 11:23:10 +00:00
}
}
/// Tantivy's Document is the object that can be indexed and then searched for.
///
/// Documents are fundamentally a collection of unordered tuples
2019-08-02 11:23:10 +00:00
/// (field_name, value). In this list, one field may appear more than once.
///
/// Example:
/// >>> doc = tantivy.Document()
2019-08-02 11:23:10 +00:00
/// >>> doc.add_text("title", "The Old Man and the Sea")
/// >>> doc.add_text("body", ("He was an old man who fished alone in a "
/// "skiff in the Gulf Stream and he had gone "
/// "eighty-four days now without taking a fish."))
2019-08-02 11:23:10 +00:00
///
/// For simplicity, it is also possible to build a `Document` by passing the field
/// values directly as constructor arguments.
///
/// Example:
/// >>> doc = tantivy.Document(title=["The Old Man and the Sea"], body=["..."])
///
/// As syntactic sugar, tantivy also allows the user to pass a single values
/// if there is only one. In other words, the following is also legal.
///
/// Example:
/// >>> doc = tantivy.Document(title="The Old Man and the Sea", body="...")
///
/// For numeric fields, the [`Document`] constructor does not have any
/// information about the type and will try to guess the type.
/// Therefore, it is recommended to use the [`Document::from_dict()`],
/// [`Document::extract()`], or `Document::add_*()` functions to provide
/// explicit type information.
///
/// Example:
/// >>> schema = (
/// SchemaBuilder()
/// .add_unsigned_field("unsigned")
/// .add_integer_field("signed")
/// .add_float_field("float")
/// .build()
/// )
/// >>> doc = tantivy.Document.from_dict(
/// {"unsigned": 1000, "signed": -5, "float": 0.4},
/// schema,
/// )
#[pyclass]
#[derive(Clone, Default, PartialEq)]
pub(crate) struct Document {
2019-08-02 11:23:10 +00:00
pub(crate) field_values: BTreeMap<String, Vec<tv::schema::Value>>,
}
impl fmt::Debug for Document {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let doc_str = self
.field_values
.iter()
.map(|(field_name, field_values)| {
let values_str: String = field_values
.iter()
.map(value_to_string)
.join(",")
.chars()
.take(10)
.collect();
format!("{field_name}=[{values_str}]")
2019-08-02 11:23:10 +00:00
})
.join(",");
write!(f, "Document({doc_str})")
2019-08-02 11:23:10 +00:00
}
}
#[pymethods]
impl Document {
/// Creates a new document with optional fields from `**kwargs`.
///
/// Note that the types of numeric fields are unknown here. To
/// provide explicit type information, use the [`from_dict()`],
/// [`extend()`], or `add_<type>()` functions.
#[new]
#[pyo3(signature = (**kwargs))]
2020-04-19 11:35:14 +00:00
fn new(kwargs: Option<&PyDict>) -> PyResult<Self> {
2019-08-02 11:23:10 +00:00
let mut document = Document::default();
if let Some(field_dict) = kwargs {
document.extend(field_dict, None)?;
2019-08-02 11:23:10 +00:00
}
2020-04-19 11:35:14 +00:00
Ok(document)
2019-08-02 11:23:10 +00:00
}
fn extend(
&mut self,
py_dict: &PyDict,
schema: Option<&Schema>,
) -> PyResult<()> {
Document::extract_py_values_from_dict(
py_dict,
schema,
&mut self.field_values,
)
2019-08-02 11:23:10 +00:00
}
#[staticmethod]
fn from_dict(
py_dict: &PyDict,
schema: Option<&Schema>,
) -> PyResult<Document> {
2019-08-02 11:23:10 +00:00
let mut field_values: BTreeMap<String, Vec<tv::schema::Value>> =
BTreeMap::new();
Document::extract_py_values_from_dict(
py_dict,
schema,
&mut field_values,
)?;
2019-08-02 11:23:10 +00:00
Ok(Document { field_values })
}
/// Returns a dictionary with the different
/// field values.
///
/// In tantivy, `Document` can be hold multiple
/// values for a single field.
///
/// For this reason, the dictionary, will associate
/// a list of value for every field.
fn to_dict(&self, py: Python) -> PyResult<PyObject> {
let dict = PyDict::new(py);
for (key, values) in &self.field_values {
let values_py: Vec<PyObject> = values
.iter()
.map(|v| value_to_py(py, v))
.collect::<PyResult<_>>()?;
dict.set_item(key, values_py)?;
}
Ok(dict.into())
}
/// Add a text value to the document.
///
/// Args:
/// field_name (str): The field name for which we are adding the text.
/// text (str): The text that will be added to the document.
2019-08-02 11:23:10 +00:00
fn add_text(&mut self, field_name: String, text: &str) {
2023-08-04 15:19:39 +00:00
self.add_value(field_name, text);
}
/// Add an unsigned integer value to the document.
///
/// Args:
/// field_name (str): The field name for which we are adding the unsigned integer.
/// value (int): The integer that will be added to the document.
2019-08-02 11:23:10 +00:00
fn add_unsigned(&mut self, field_name: String, value: u64) {
2023-08-04 15:19:39 +00:00
self.add_value(field_name, value);
}
/// Add a signed integer value to the document.
///
/// Args:
/// field_name (str): The field name for which we are adding the integer.
/// value (int): The integer that will be added to the document.
2019-08-02 11:23:10 +00:00
fn add_integer(&mut self, field_name: String, value: i64) {
2023-08-04 15:19:39 +00:00
self.add_value(field_name, value);
}
/// Add a float value to the document.
///
/// Args:
2023-01-17 01:01:43 +00:00
/// field_name (str): The field name for which we are adding the value.
/// value (f64): The float that will be added to the document.
fn add_float(&mut self, field_name: String, value: f64) {
2023-08-04 15:19:39 +00:00
self.add_value(field_name, value);
}
/// Add a date value to the document.
///
/// Args:
/// field_name (str): The field name for which we are adding the date.
/// value (datetime): The date that will be added to the document.
2019-08-02 11:23:10 +00:00
fn add_date(&mut self, field_name: String, value: &PyDateTime) {
let datetime = Utc
.with_ymd_and_hms(
2019-08-08 11:55:19 +00:00
value.get_year(),
value.get_month().into(),
value.get_day().into(),
value.get_hour().into(),
value.get_minute().into(),
value.get_second().into(),
)
.single()
.unwrap();
2023-08-04 15:19:39 +00:00
self.add_value(
field_name,
tv::DateTime::from_timestamp_secs(datetime.timestamp()),
);
}
/// Add a facet value to the document.
/// Args:
/// field_name (str): The field name for which we are adding the facet.
/// value (Facet): The Facet that will be added to the document.
2019-08-02 11:23:10 +00:00
fn add_facet(&mut self, field_name: String, facet: &Facet) {
2023-08-04 15:19:39 +00:00
self.add_value(field_name, facet.inner.clone());
}
/// Add a bytes value to the document.
///
/// Args:
/// field_name (str): The field for which we are adding the bytes.
/// value (bytes): The bytes that will be added to the document.
2019-08-02 11:23:10 +00:00
fn add_bytes(&mut self, field_name: String, bytes: Vec<u8>) {
2023-08-04 15:19:39 +00:00
self.add_value(field_name, bytes);
}
2022-04-15 03:50:37 +00:00
/// Add a bytes value to the document.
///
/// Args:
/// field_name (str): The field for which we are adding the bytes.
/// value (str): The json object that will be added to the document.
///
/// Raises a ValueError if the json is invalid.
fn add_json(&mut self, field_name: String, json: &str) -> PyResult<()> {
2022-04-15 03:50:37 +00:00
let json_object: serde_json::Value =
serde_json::from_str(json).map_err(to_pyerr)?;
2023-08-04 15:19:39 +00:00
self.add_value(field_name, json_object);
Ok(())
2022-04-15 03:50:37 +00:00
}
/// Returns the number of added fields that have been added to the document
#[getter]
2019-08-02 11:23:10 +00:00
fn num_fields(&self) -> usize {
self.field_values.len()
}
/// True if the document is empty, False otherwise.
#[getter]
fn is_empty(&self) -> bool {
2019-08-02 11:23:10 +00:00
self.field_values.is_empty()
}
/// Get the first value associated with the given field.
///
/// Args:
/// field (Field): The field for which we would like to get the value.
///
/// Returns the value if one is found, otherwise None.
/// The type of the value depends on the field.
2019-08-02 11:23:10 +00:00
fn get_first(
&self,
py: Python,
fieldname: &str,
) -> PyResult<Option<PyObject>> {
if let Some(value) = self.iter_values_for_field(fieldname).next() {
let py_value = value_to_py(py, value)?;
Ok(Some(py_value))
} else {
Ok(None)
}
}
/// Get the all values associated with the given field.
///
/// Args:
/// field (Field): The field for which we would like to get the values.
///
/// Returns a list of values.
/// The type of the value depends on the field.
2019-08-02 11:23:10 +00:00
fn get_all(&self, py: Python, field_name: &str) -> PyResult<Vec<PyObject>> {
self.iter_values_for_field(field_name)
.map(|value| value_to_py(py, value))
.collect::<PyResult<Vec<_>>>()
}
2022-04-15 03:50:37 +00:00
fn __getitem__(&self, field_name: &str) -> PyResult<Vec<PyObject>> {
Python::with_gil(|py| -> PyResult<Vec<PyObject>> {
self.get_all(py, field_name)
})
2022-04-15 03:50:37 +00:00
}
fn __repr__(&self) -> PyResult<String> {
Ok(format!("{self:?}"))
2022-04-15 03:50:37 +00:00
}
fn __copy__(&self) -> Self {
self.clone()
}
fn __deepcopy__(&self, _memo: &PyDict) -> Self {
self.clone()
}
fn __richcmp__(
&self,
other: &Self,
op: CompareOp,
py: Python<'_>,
) -> PyObject {
match op {
CompareOp::Eq => (self == other).into_py(py),
CompareOp::Ne => (self != other).into_py(py),
_ => py.NotImplemented(),
}
}
2019-08-02 11:23:10 +00:00
}
2019-08-02 11:23:10 +00:00
impl Document {
2023-08-04 15:19:39 +00:00
fn add_value<T>(&mut self, field_name: String, value: T)
where
Value: From<T>,
{
self.field_values
.entry(field_name)
.or_insert_with(Vec::new)
.push(Value::from(value));
}
fn extract_py_values_from_dict(
py_dict: &PyDict,
schema: Option<&Schema>,
out_field_values: &mut BTreeMap<String, Vec<tv::schema::Value>>,
) -> PyResult<()> {
// TODO: Reserve when https://github.com/rust-lang/rust/issues/72631 is stable.
// out_field_values.reserve(py_dict.len());
for key_value_any in py_dict.items() {
if let Ok(key_value) = key_value_any.downcast::<PyTuple>() {
if key_value.len() != 2 {
continue;
}
let key = key_value.get_item(0)?.extract::<String>()?;
let field_type = if let Some(schema) = schema {
let field_type = schema
.inner
.get_field(key.as_str())
.map(|field| {
schema.inner.get_field_entry(field).field_type()
})
.ok();
if let Some(field_type) = field_type {
// A field type was found, so validate it after the values are extracted.
Some(field_type)
} else {
// The field does not exist in the schema, so skip over it.
continue;
}
} else {
// No schema was provided, so do not validate anything.
None
};
let value_list = if let Some(field_type) = field_type {
extract_value_single_or_list_for_type(
key_value.get_item(1)?,
field_type,
key.as_str(),
)?
} else {
extract_value_single_or_list(key_value.get_item(1)?)?
};
out_field_values.insert(key, value_list);
}
}
Ok(())
}
2019-08-02 11:23:10 +00:00
fn iter_values_for_field<'a>(
&'a self,
field: &str,
) -> impl Iterator<Item = &'a Value> + 'a {
self.field_values
.get(field)
.into_iter()
.flat_map(|values| values.iter())
}
}