tantivy-py/src/lib.rs

215 lines
7.5 KiB
Rust

use ::tantivy as tv;
use ::tantivy::schema::{OwnedValue as Value, Term};
use pyo3::{exceptions, prelude::*, wrap_pymodule};
mod document;
mod facet;
mod index;
mod parser_error;
mod query;
mod schema;
mod schemabuilder;
mod searcher;
mod snippet;
use document::{extract_value, extract_value_for_type, Document};
use facet::Facet;
use index::Index;
use query::{Occur, Query};
use schema::{FieldType, Schema};
use schemabuilder::SchemaBuilder;
use searcher::{DocAddress, Order, SearchResult, Searcher};
use snippet::{Snippet, SnippetGenerator};
/// Python bindings for the search engine library Tantivy.
///
/// Tantivy is a full text search engine library written in rust.
///
/// It is closer to Apache Lucene than to Elasticsearch and Apache Solr in
/// the sense it is not an off-the-shelf search engine server, but rather
/// a library that can be used to build such a search engine.
/// Tantivy is, in fact, strongly inspired by Lucene's design.
///
/// Example:
/// >>> import json
/// >>> import tantivy
///
/// >>> builder = tantivy.SchemaBuilder()
///
/// >>> title = builder.add_text_field("title", stored=True)
/// >>> body = builder.add_text_field("body")
///
/// >>> schema = builder.build()
/// >>> index = tantivy.Index(schema)
/// >>> doc = tantivy.Document()
/// >>> doc.add_text(title, "The Old Man and the Sea")
/// >>> doc.add_text(body, ("He was an old man who fished alone in a "
/// "skiff in the Gulf Stream and he had gone "
/// "eighty-four days now without taking a fish."))
///
/// >>> writer.add_document(doc)
///
/// >>> doc = schema.parse_document(json.dumps({
/// "title": ["Frankenstein", "The Modern Prometheus"],
/// "body": ("You will rejoice to hear that no disaster has "
/// "accompanied the commencement of an enterprise which "
/// "you have regarded with such evil forebodings. "
/// "I arrived here yesterday, and my first task is to "
/// "assure my dear sister of my welfare and increasing "
/// "confidence in the success of my undertaking.")
/// }))
///
/// >>> writer.add_document(doc)
/// >>> writer.commit()
///
/// >>> reader = index.reader()
/// >>> searcher = reader.searcher()
///
/// >>> query = index.parse_query("sea whale", [title, body])
///
/// >>> result = searcher.search(query, 10)
///
/// >>> assert len(result) == 1
///
#[pymodule]
fn tantivy(_py: Python, m: &Bound<PyModule>) -> PyResult<()> {
m.add_class::<Order>()?;
m.add_class::<Schema>()?;
m.add_class::<SchemaBuilder>()?;
m.add_class::<Searcher>()?;
m.add_class::<SearchResult>()?;
m.add_class::<Document>()?;
m.add_class::<Index>()?;
m.add_class::<DocAddress>()?;
m.add_class::<Facet>()?;
m.add_class::<Query>()?;
m.add_class::<Snippet>()?;
m.add_class::<SnippetGenerator>()?;
m.add_class::<Occur>()?;
m.add_class::<FieldType>()?;
m.add_wrapped(wrap_pymodule!(query_parser_error))?;
m.add("__version__", tv::version_string())?;
Ok(())
}
/// Submodule containing all the possible errors that can be raised during
/// query parsing.
///
/// Example:
/// >>> import tantivy
/// >>> from tantivy import query_parser_error
///
/// >>> builder = tantivy.SchemaBuilder()
///
/// >>> title = builder.add_text_field("title", stored=True)
/// >>> body = builder.add_text_field("body")
/// >>> id = builder.add_unsigned_field("id")
/// >>> rating = builder.add_float_field("rating")
///
/// >>> schema = builder.build()
/// >>> index = tantivy.Index(schema)
///
/// >>> query, errors = index.parse_query_lenient(
/// "bod:'world' AND id:<3.5 AND rating:5.0"
/// )
///
/// >>> assert len(errors) == 2
/// >>> assert isinstance(errors[0], query_parser_error.FieldDoesNotExistError)
/// >>> assert isinstance(errors[1], query_parser_error.ExpectedIntError)
#[pymodule]
fn query_parser_error(_py: Python, m: &Bound<PyModule>) -> PyResult<()> {
m.add_class::<parser_error::SyntaxError>()?;
m.add_class::<parser_error::UnsupportedQueryError>()?;
m.add_class::<parser_error::FieldDoesNotExistError>()?;
m.add_class::<parser_error::ExpectedIntError>()?;
m.add_class::<parser_error::ExpectedBase64Error>()?;
m.add_class::<parser_error::ExpectedFloatError>()?;
m.add_class::<parser_error::ExpectedBoolError>()?;
m.add_class::<parser_error::AllButQueryForbiddenError>()?;
m.add_class::<parser_error::NoDefaultFieldDeclaredError>()?;
m.add_class::<parser_error::FieldNotIndexedError>()?;
m.add_class::<parser_error::FieldDoesNotHavePositionsIndexedError>()?;
m.add_class::<parser_error::PhrasePrefixRequiresAtLeastTwoTermsError>()?;
m.add_class::<parser_error::UnknownTokenizerError>()?;
m.add_class::<parser_error::RangeMustNotHavePhraseError>()?;
m.add_class::<parser_error::DateFormatError>()?;
m.add_class::<parser_error::FacetFormatError>()?;
m.add_class::<parser_error::IpFormatError>()?;
Ok(())
}
pub(crate) fn to_pyerr<E: ToString>(err: E) -> PyErr {
exceptions::PyValueError::new_err(err.to_string())
}
pub(crate) fn get_field(
schema: &tv::schema::Schema,
field_name: &str,
) -> PyResult<tv::schema::Field> {
let field = schema.get_field(field_name).map_err(|_err| {
exceptions::PyValueError::new_err(format!(
"Field `{field_name}` is not defined in the schema."
))
})?;
Ok(field)
}
pub(crate) fn make_term(
schema: &tv::schema::Schema,
field_name: &str,
field_value: &Bound<PyAny>,
) -> PyResult<tv::Term> {
let field = get_field(schema, field_name)?;
let value = extract_value(field_value)?;
let term = match value {
Value::Str(text) => Term::from_field_text(field, &text),
Value::U64(num) => Term::from_field_u64(field, num),
Value::I64(num) => Term::from_field_i64(field, num),
Value::F64(num) => Term::from_field_f64(field, num),
Value::Date(d) => Term::from_field_date(field, d),
Value::Facet(facet) => Term::from_facet(field, &facet),
Value::Bool(b) => Term::from_field_bool(field, b),
Value::IpAddr(i) => Term::from_field_ip_addr(field, i),
_ => {
return Err(exceptions::PyValueError::new_err(format!(
"Can't create a term for Field `{field_name}` with value `{field_value}`."
)))
}
};
Ok(term)
}
pub(crate) fn make_term_for_type(
schema: &tv::schema::Schema,
field_name: &str,
field_type: FieldType,
field_value: &Bound<PyAny>,
) -> PyResult<tv::Term> {
let field = get_field(schema, field_name)?;
let value =
extract_value_for_type(field_value, field_type.into(), field_name)?;
let term = match value {
Value::Str(text) => Term::from_field_text(field, &text),
Value::U64(num) => Term::from_field_u64(field, num),
Value::I64(num) => Term::from_field_i64(field, num),
Value::F64(num) => Term::from_field_f64(field, num),
Value::Date(d) => Term::from_field_date(field, d),
Value::Facet(facet) => Term::from_facet(field, &facet),
Value::Bool(b) => Term::from_field_bool(field, b),
Value::IpAddr(i) => Term::from_field_ip_addr(field, i),
_ => {
return Err(exceptions::PyValueError::new_err(format!(
"Can't create a term for Field `{field_name}` with value `{field_value}`."
)))
}
};
Ok(term)
}