tantivy-py/src/searcher.rs

372 lines
12 KiB
Rust

#![allow(clippy::new_ret_no_self)]
use crate::{document::Document, query::Query, to_pyerr};
use pyo3::types::PyDict;
use pyo3::{basic::CompareOp, exceptions::PyValueError, prelude::*};
use serde::{Deserialize, Serialize};
use tantivy as tv;
use tantivy::aggregation::AggregationCollector;
use tantivy::collector::{Count, MultiCollector, TopDocs};
use tantivy::TantivyDocument;
// Bring the trait into scope. This is required for the `to_named_doc` method.
// However, tantivy-py declares its own `Document` class, so we need to avoid
// introduce the `Document` trait into the namespace.
use tantivy::Document as _;
/// Tantivy's Searcher class
///
/// A Searcher is used to search the index given a prepared Query.
#[pyclass(module = "tantivy.tantivy")]
pub(crate) struct Searcher {
pub(crate) inner: tv::Searcher,
}
#[derive(Clone, Deserialize, FromPyObject, PartialEq, Serialize)]
enum Fruit {
#[pyo3(transparent)]
Score(f32),
#[pyo3(transparent)]
Order(u64),
}
impl std::fmt::Debug for Fruit {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Fruit::Score(s) => f.write_str(&format!("{s}")),
Fruit::Order(o) => f.write_str(&format!("{o}")),
}
}
}
impl ToPyObject for Fruit {
fn to_object(&self, py: Python) -> PyObject {
match self {
Fruit::Score(s) => s.to_object(py),
Fruit::Order(o) => o.to_object(py),
}
}
}
#[pyclass(frozen, module = "tantivy.tantivy")]
#[derive(Clone, Copy, Deserialize, PartialEq, Serialize)]
/// Enum representing the direction in which something should be sorted.
pub(crate) enum Order {
/// Ascending. Smaller values appear first.
Asc,
/// Descending. Larger values appear first.
Desc,
}
impl From<Order> for tv::Order {
fn from(order: Order) -> Self {
match order {
Order::Asc => tv::Order::Asc,
Order::Desc => tv::Order::Desc,
}
}
}
#[pyclass(frozen, module = "tantivy.tantivy")]
#[derive(Clone, Default, Deserialize, PartialEq, Serialize)]
/// Object holding a results successful search.
pub(crate) struct SearchResult {
hits: Vec<(Fruit, DocAddress)>,
#[pyo3(get)]
/// How many documents matched the query. Only available if `count` was set
/// to true during the search.
count: Option<usize>,
}
#[pymethods]
impl SearchResult {
#[new]
fn new(
py: Python,
hits: Vec<(PyObject, DocAddress)>,
count: Option<usize>,
) -> PyResult<Self> {
let hits = hits
.iter()
.map(|(f, d)| Ok((f.extract(py)?, d.clone())))
.collect::<PyResult<Vec<_>>>()?;
Ok(Self { hits, count })
}
fn __repr__(&self) -> PyResult<String> {
if let Some(count) = self.count {
Ok(format!(
"SearchResult(hits: {:?}, count: {})",
self.hits, count
))
} else {
Ok(format!("SearchResult(hits: {:?})", self.hits))
}
}
fn __richcmp__(
&self,
other: &Self,
op: CompareOp,
py: Python<'_>,
) -> PyObject {
match op {
CompareOp::Eq => (self == other).into_py(py),
CompareOp::Ne => (self != other).into_py(py),
_ => py.NotImplemented(),
}
}
fn __getnewargs__(
&self,
py: Python,
) -> PyResult<(Vec<(PyObject, DocAddress)>, Option<usize>)> {
Ok((self.hits(py)?, self.count))
}
#[getter]
/// The list of tuples that contains the scores and DocAddress of the
/// search results.
fn hits(&self, py: Python) -> PyResult<Vec<(PyObject, DocAddress)>> {
let ret: Vec<(PyObject, DocAddress)> = self
.hits
.iter()
.map(|(result, address)| (result.to_object(py), address.clone()))
.collect();
Ok(ret)
}
}
#[pymethods]
impl Searcher {
/// Search the index with the given query and collect results.
///
/// Args:
/// query (Query): The query that will be used for the search.
/// limit (int, optional): The maximum number of search results to
/// return. Defaults to 10.
/// count (bool, optional): Should the number of documents that match
/// the query be returned as well. Defaults to true.
/// order_by_field (Field, optional): A schema field that the results
/// should be ordered by. The field must be declared as a fast field
/// when building the schema. Note, this only works for unsigned
/// fields.
/// offset (Field, optional): The offset from which the results have
/// to be returned.
/// order (Order, optional): The order in which the results
/// should be sorted. If not specified, defaults to descending.
///
/// Returns `SearchResult` object.
///
/// Raises a ValueError if there was an error with the search.
#[pyo3(signature = (query, limit = 10, count = true, order_by_field = None, offset = 0, order = Order::Desc))]
#[allow(clippy::too_many_arguments)]
fn search(
&self,
py: Python,
query: &Query,
limit: usize,
count: bool,
order_by_field: Option<&str>,
offset: usize,
order: Order,
) -> PyResult<SearchResult> {
py.allow_threads(move || {
let mut multicollector = MultiCollector::new();
let count_handle = if count {
Some(multicollector.add_collector(Count))
} else {
None
};
let (mut multifruit, hits) = {
if let Some(order_by) = order_by_field {
let collector = TopDocs::with_limit(limit)
.and_offset(offset)
.order_by_u64_field(order_by, order.into());
let top_docs_handle =
multicollector.add_collector(collector);
let ret = self.inner.search(query.get(), &multicollector);
match ret {
Ok(mut r) => {
let top_docs = top_docs_handle.extract(&mut r);
let result: Vec<(Fruit, DocAddress)> = top_docs
.iter()
.map(|(f, d)| {
(Fruit::Order(*f), DocAddress::from(d))
})
.collect();
(r, result)
}
Err(e) => {
return Err(PyValueError::new_err(e.to_string()))
}
}
} else {
let collector =
TopDocs::with_limit(limit).and_offset(offset);
let top_docs_handle =
multicollector.add_collector(collector);
let ret = self.inner.search(query.get(), &multicollector);
match ret {
Ok(mut r) => {
let top_docs = top_docs_handle.extract(&mut r);
let result: Vec<(Fruit, DocAddress)> = top_docs
.iter()
.map(|(f, d)| {
(Fruit::Score(*f), DocAddress::from(d))
})
.collect();
(r, result)
}
Err(e) => {
return Err(PyValueError::new_err(e.to_string()))
}
}
}
};
let count = count_handle.map(|h| h.extract(&mut multifruit));
Ok(SearchResult { hits, count })
})
}
#[pyo3(signature = (query, agg))]
fn aggregate(
&self,
py: Python,
query: &Query,
agg: Py<PyDict>,
) -> PyResult<Py<PyDict>> {
let py_json = py.import_bound("json")?;
let agg_query_str = py_json.call_method1("dumps", (agg,))?.to_string();
let agg_str = py.allow_threads(move || {
let agg_collector = AggregationCollector::from_aggs(
serde_json::from_str(&agg_query_str).map_err(to_pyerr)?,
Default::default(),
);
let agg_res = self
.inner
.search(query.get(), &agg_collector)
.map_err(to_pyerr)?;
serde_json::to_string(&agg_res).map_err(to_pyerr)
})?;
let agg_dict = py_json.call_method1("loads", (agg_str,))?;
let agg_dict = agg_dict.downcast::<PyDict>()?;
Ok(agg_dict.clone().unbind())
}
/// Returns the overall number of documents in the index.
#[getter]
fn num_docs(&self) -> u64 {
self.inner.num_docs()
}
/// Returns the number of segments in the index.
#[getter]
fn num_segments(&self) -> usize {
self.inner.segment_readers().len()
}
/// Fetches a document from Tantivy's store given a DocAddress.
///
/// Args:
/// doc_address (DocAddress): The DocAddress that is associated with
/// the document that we wish to fetch.
///
/// Returns the Document, raises ValueError if the document can't be found.
fn doc(&self, doc_address: &DocAddress) -> PyResult<Document> {
let doc: TantivyDocument =
self.inner.doc(doc_address.into()).map_err(to_pyerr)?;
let named_doc = doc.to_named_doc(self.inner.schema());
Ok(crate::document::Document {
field_values: named_doc.0,
})
}
fn __repr__(&self) -> PyResult<String> {
Ok(format!(
"Searcher(num_docs={}, num_segments={})",
self.inner.num_docs(),
self.inner.segment_readers().len()
))
}
}
/// DocAddress contains all the necessary information to identify a document
/// given a Searcher object.
///
/// It consists in an id identifying its segment, and its segment-local DocId.
/// The id used for the segment is actually an ordinal in the list of segment
/// hold by a Searcher.
#[pyclass(frozen, module = "tantivy.tantivy")]
#[derive(Clone, Debug, Deserialize, PartialEq, Serialize)]
pub(crate) struct DocAddress {
pub(crate) segment_ord: tv::SegmentOrdinal,
pub(crate) doc: tv::DocId,
}
#[pymethods]
impl DocAddress {
#[new]
fn new(segment_ord: tv::SegmentOrdinal, doc: tv::DocId) -> Self {
DocAddress { segment_ord, doc }
}
/// The segment ordinal is an id identifying the segment hosting the
/// document. It is only meaningful, in the context of a searcher.
#[getter]
fn segment_ord(&self) -> u32 {
self.segment_ord
}
/// The segment local DocId
#[getter]
fn doc(&self) -> u32 {
self.doc
}
fn __richcmp__(
&self,
other: &Self,
op: CompareOp,
py: Python<'_>,
) -> PyObject {
match op {
CompareOp::Eq => (self == other).into_py(py),
CompareOp::Ne => (self != other).into_py(py),
_ => py.NotImplemented(),
}
}
fn __getnewargs__(&self) -> PyResult<(tv::SegmentOrdinal, tv::DocId)> {
Ok((self.segment_ord, self.doc))
}
}
impl From<&tv::DocAddress> for DocAddress {
fn from(doc_address: &tv::DocAddress) -> Self {
DocAddress {
segment_ord: doc_address.segment_ord,
doc: doc_address.doc_id,
}
}
}
impl From<&DocAddress> for tv::DocAddress {
fn from(val: &DocAddress) -> Self {
tv::DocAddress {
segment_ord: val.segment_ord(),
doc_id: val.doc(),
}
}
}