182 lines
5.3 KiB
Rust
182 lines
5.3 KiB
Rust
use crate::{make_term, Schema};
|
|
use pyo3::{
|
|
exceptions,
|
|
prelude::*,
|
|
types::{PyAny, PyFloat, PyString, PyTuple},
|
|
};
|
|
use tantivy as tv;
|
|
|
|
/// Custom Tuple struct to represent a pair of Occur and Query
|
|
/// for the BooleanQuery
|
|
struct OccurQueryPair(Occur, Query);
|
|
|
|
impl<'source> FromPyObject<'source> for OccurQueryPair {
|
|
fn extract(ob: &'source PyAny) -> PyResult<Self> {
|
|
let tuple = ob.downcast::<PyTuple>()?;
|
|
let occur = tuple.get_item(0)?.extract()?;
|
|
let query = tuple.get_item(1)?.extract()?;
|
|
|
|
Ok(OccurQueryPair(occur, query))
|
|
}
|
|
}
|
|
|
|
/// Tantivy's Occur
|
|
#[pyclass(frozen, module = "tantivy.tantivy")]
|
|
#[derive(Clone)]
|
|
pub enum Occur {
|
|
Must,
|
|
Should,
|
|
MustNot,
|
|
}
|
|
|
|
impl From<Occur> for tv::query::Occur {
|
|
fn from(occur: Occur) -> tv::query::Occur {
|
|
match occur {
|
|
Occur::Must => tv::query::Occur::Must,
|
|
Occur::Should => tv::query::Occur::Should,
|
|
Occur::MustNot => tv::query::Occur::MustNot,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Tantivy's Query
|
|
#[pyclass(frozen, module = "tantivy.tantivy")]
|
|
pub(crate) struct Query {
|
|
pub(crate) inner: Box<dyn tv::query::Query>,
|
|
}
|
|
|
|
impl Clone for Query {
|
|
fn clone(&self) -> Self {
|
|
Query {
|
|
inner: self.inner.box_clone(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Query {
|
|
pub(crate) fn get(&self) -> &dyn tv::query::Query {
|
|
&self.inner
|
|
}
|
|
}
|
|
|
|
#[pymethods]
|
|
impl Query {
|
|
fn __repr__(&self) -> PyResult<String> {
|
|
Ok(format!("Query({:?})", self.get()))
|
|
}
|
|
|
|
/// Construct a Tantivy's TermQuery
|
|
#[staticmethod]
|
|
#[pyo3(signature = (schema, field_name, field_value, index_option = "position"))]
|
|
pub(crate) fn term_query(
|
|
schema: &Schema,
|
|
field_name: &str,
|
|
field_value: &PyAny,
|
|
index_option: &str,
|
|
) -> PyResult<Query> {
|
|
let term = make_term(&schema.inner, field_name, field_value)?;
|
|
let index_option = match index_option {
|
|
"position" => tv::schema::IndexRecordOption::WithFreqsAndPositions,
|
|
"freq" => tv::schema::IndexRecordOption::WithFreqs,
|
|
"basic" => tv::schema::IndexRecordOption::Basic,
|
|
_ => return Err(exceptions::PyValueError::new_err(
|
|
"Invalid index option, valid choices are: 'basic', 'freq' and 'position'"
|
|
))
|
|
};
|
|
let inner = tv::query::TermQuery::new(term, index_option);
|
|
Ok(Query {
|
|
inner: Box::new(inner),
|
|
})
|
|
}
|
|
|
|
/// Construct a Tantivy's AllQuery
|
|
#[staticmethod]
|
|
pub(crate) fn all_query() -> PyResult<Query> {
|
|
let inner = tv::query::AllQuery {};
|
|
Ok(Query {
|
|
inner: Box::new(inner),
|
|
})
|
|
}
|
|
|
|
/// Construct a Tantivy's FuzzyTermQuery
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * `schema` - Schema of the target index.
|
|
/// * `field_name` - Field name to be searched.
|
|
/// * `text` - String representation of the query term.
|
|
/// * `distance` - (Optional) Edit distance you are going to alow. When not specified, the default is 1.
|
|
/// * `transposition_cost_one` - (Optional) If true, a transposition (swapping) cost will be 1; otherwise it will be 2. When not specified, the default is true.
|
|
/// * `prefix` - (Optional) If true, prefix levenshtein distance is applied. When not specified, the default is false.
|
|
#[staticmethod]
|
|
#[pyo3(signature = (schema, field_name, text, distance = 1, transposition_cost_one = true, prefix = false))]
|
|
pub(crate) fn fuzzy_term_query(
|
|
schema: &Schema,
|
|
field_name: &str,
|
|
text: &PyString,
|
|
distance: u8,
|
|
transposition_cost_one: bool,
|
|
prefix: bool,
|
|
) -> PyResult<Query> {
|
|
let term = make_term(&schema.inner, field_name, &text)?;
|
|
let inner = if prefix {
|
|
tv::query::FuzzyTermQuery::new_prefix(
|
|
term,
|
|
distance,
|
|
transposition_cost_one,
|
|
)
|
|
} else {
|
|
tv::query::FuzzyTermQuery::new(
|
|
term,
|
|
distance,
|
|
transposition_cost_one,
|
|
)
|
|
};
|
|
Ok(Query {
|
|
inner: Box::new(inner),
|
|
})
|
|
}
|
|
|
|
#[staticmethod]
|
|
#[pyo3(signature = (subqueries))]
|
|
pub(crate) fn boolean_query(
|
|
subqueries: Vec<(Occur, Query)>,
|
|
) -> PyResult<Query> {
|
|
let dyn_subqueries = subqueries
|
|
.into_iter()
|
|
.map(|(occur, query)| (occur.into(), query.inner.box_clone()))
|
|
.collect::<Vec<_>>();
|
|
|
|
let inner = tv::query::BooleanQuery::from(dyn_subqueries);
|
|
|
|
Ok(Query {
|
|
inner: Box::new(inner),
|
|
})
|
|
}
|
|
|
|
/// Construct a Tantivy's DisjunctionMaxQuery
|
|
#[staticmethod]
|
|
pub(crate) fn disjunction_max_query(
|
|
subqueries: Vec<Query>,
|
|
tie_breaker: Option<&PyFloat>,
|
|
) -> PyResult<Query> {
|
|
let inner_queries: Vec<Box<dyn tv::query::Query>> = subqueries
|
|
.iter()
|
|
.map(|query| query.inner.box_clone())
|
|
.collect();
|
|
|
|
let dismax_query = if let Some(tie_breaker) = tie_breaker {
|
|
tv::query::DisjunctionMaxQuery::with_tie_breaker(
|
|
inner_queries,
|
|
tie_breaker.extract::<f32>()?,
|
|
)
|
|
} else {
|
|
tv::query::DisjunctionMaxQuery::new(inner_queries)
|
|
};
|
|
|
|
Ok(Query {
|
|
inner: Box::new(dismax_query),
|
|
})
|
|
}
|
|
}
|