550 lines
21 KiB
Rust
550 lines
21 KiB
Rust
#![allow(clippy::new_ret_no_self)]
|
|
|
|
use std::collections::HashMap;
|
|
|
|
use pyo3::{exceptions, prelude::*, types::PyAny};
|
|
|
|
use crate::{
|
|
document::{extract_value, Document},
|
|
get_field,
|
|
parser_error::QueryParserErrorIntoPy,
|
|
query::Query,
|
|
schema::Schema,
|
|
searcher::Searcher,
|
|
to_pyerr,
|
|
};
|
|
use tantivy as tv;
|
|
use tantivy::{
|
|
directory::MmapDirectory,
|
|
schema::{
|
|
document::TantivyDocument, NamedFieldDocument, OwnedValue as Value,
|
|
Term,
|
|
},
|
|
tokenizer::{
|
|
Language, LowerCaser, RemoveLongFilter, SimpleTokenizer, Stemmer,
|
|
TextAnalyzer,
|
|
},
|
|
};
|
|
|
|
const RELOAD_POLICY: &str = "commit";
|
|
|
|
/// IndexWriter is the user entry-point to add documents to the index.
|
|
///
|
|
/// To create an IndexWriter first create an Index and call the writer() method
|
|
/// on the index object.
|
|
#[pyclass(module = "tantivy.tantivy")]
|
|
pub(crate) struct IndexWriter {
|
|
inner_index_writer: Option<tv::IndexWriter>,
|
|
schema: tv::schema::Schema,
|
|
}
|
|
|
|
impl IndexWriter {
|
|
fn inner(&self) -> PyResult<&tv::IndexWriter> {
|
|
self.inner_index_writer.as_ref().ok_or_else(|| {
|
|
exceptions::PyRuntimeError::new_err(
|
|
"IndexWriter was consumed and no longer in a valid state",
|
|
)
|
|
})
|
|
}
|
|
|
|
fn inner_mut(&mut self) -> PyResult<&mut tv::IndexWriter> {
|
|
self.inner_index_writer.as_mut().ok_or_else(|| {
|
|
exceptions::PyRuntimeError::new_err(
|
|
"IndexWriter was consumed and no longer in a valid state",
|
|
)
|
|
})
|
|
}
|
|
|
|
fn take_inner(&mut self) -> PyResult<tv::IndexWriter> {
|
|
self.inner_index_writer.take().ok_or_else(|| {
|
|
exceptions::PyRuntimeError::new_err(
|
|
"IndexWriter was consumed and no longer in a valid state",
|
|
)
|
|
})
|
|
}
|
|
}
|
|
|
|
#[pymethods]
|
|
impl IndexWriter {
|
|
/// Add a document to the index.
|
|
///
|
|
/// If the indexing pipeline is full, this call may block.
|
|
///
|
|
/// Returns an `opstamp`, which is an increasing integer that can be used
|
|
/// by the client to align commits with its own document queue.
|
|
/// The `opstamp` represents the number of documents that have been added
|
|
/// since the creation of the index.
|
|
pub fn add_document(&mut self, doc: &Document) -> PyResult<u64> {
|
|
let named_doc = NamedFieldDocument(doc.field_values.clone());
|
|
let doc = TantivyDocument::convert_named_doc(&self.schema, named_doc)
|
|
.map_err(to_pyerr)?;
|
|
self.inner()?.add_document(doc).map_err(to_pyerr)
|
|
}
|
|
|
|
/// Helper for the `add_document` method, but passing a json string.
|
|
///
|
|
/// If the indexing pipeline is full, this call may block.
|
|
///
|
|
/// Returns an `opstamp`, which is an increasing integer that can be used
|
|
/// by the client to align commits with its own document queue.
|
|
/// The `opstamp` represents the number of documents that have been added
|
|
/// since the creation of the index.
|
|
pub fn add_json(&mut self, json: &str) -> PyResult<u64> {
|
|
let doc = TantivyDocument::parse_json(&self.schema, json)
|
|
.map_err(to_pyerr)?;
|
|
let opstamp = self.inner()?.add_document(doc);
|
|
opstamp.map_err(to_pyerr)
|
|
}
|
|
|
|
/// Commits all of the pending changes
|
|
///
|
|
/// A call to commit blocks. After it returns, all of the document that
|
|
/// were added since the last commit are published and persisted.
|
|
///
|
|
/// In case of a crash or an hardware failure (as long as the hard disk is
|
|
/// spared), it will be possible to resume indexing from this point.
|
|
///
|
|
/// Returns the `opstamp` of the last document that made it in the commit.
|
|
fn commit(&mut self) -> PyResult<u64> {
|
|
self.inner_mut()?.commit().map_err(to_pyerr)
|
|
}
|
|
|
|
/// Rollback to the last commit
|
|
///
|
|
/// This cancels all of the update that happened before after the last
|
|
/// commit. After calling rollback, the index is in the same state as it
|
|
/// was after the last commit.
|
|
fn rollback(&mut self) -> PyResult<u64> {
|
|
self.inner_mut()?.rollback().map_err(to_pyerr)
|
|
}
|
|
|
|
/// Detect and removes the files that are not used by the index anymore.
|
|
fn garbage_collect_files(&mut self) -> PyResult<()> {
|
|
use futures::executor::block_on;
|
|
block_on(self.inner()?.garbage_collect_files()).map_err(to_pyerr)?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Deletes all documents from the index.
|
|
fn delete_all_documents(&mut self) -> PyResult<()> {
|
|
self.inner()?.delete_all_documents().map_err(to_pyerr)?;
|
|
Ok(())
|
|
}
|
|
|
|
/// The opstamp of the last successful commit.
|
|
///
|
|
/// This is the opstamp the index will rollback to if there is a failure
|
|
/// like a power surge.
|
|
///
|
|
/// This is also the opstamp of the commit that is currently available
|
|
/// for searchers.
|
|
#[getter]
|
|
fn commit_opstamp(&self) -> PyResult<u64> {
|
|
Ok(self.inner()?.commit_opstamp())
|
|
}
|
|
|
|
/// Delete all documents containing a given term.
|
|
///
|
|
/// Args:
|
|
/// field_name (str): The field name for which we want to filter deleted docs.
|
|
/// field_value (PyAny): Python object with the value we want to filter.
|
|
///
|
|
/// If the field_name is not on the schema raises ValueError exception.
|
|
/// If the field_value is not supported raises Exception.
|
|
fn delete_documents(
|
|
&mut self,
|
|
field_name: &str,
|
|
field_value: &Bound<PyAny>,
|
|
) -> PyResult<u64> {
|
|
let field = get_field(&self.schema, field_name)?;
|
|
let value = extract_value(field_value)?;
|
|
let term = match value {
|
|
Value::Null => {
|
|
return Err(exceptions::PyValueError::new_err(format!(
|
|
"Field `{field_name}` is null type not deletable."
|
|
)))
|
|
},
|
|
Value::Str(text) => Term::from_field_text(field, &text),
|
|
Value::U64(num) => Term::from_field_u64(field, num),
|
|
Value::I64(num) => Term::from_field_i64(field, num),
|
|
Value::F64(num) => Term::from_field_f64(field, num),
|
|
Value::Date(d) => Term::from_field_date(field, d),
|
|
Value::Facet(facet) => Term::from_facet(field, &facet),
|
|
Value::Bytes(_) => {
|
|
return Err(exceptions::PyValueError::new_err(format!(
|
|
"Field `{field_name}` is bytes type not deletable."
|
|
)))
|
|
}
|
|
Value::PreTokStr(_pretok) => {
|
|
return Err(exceptions::PyValueError::new_err(format!(
|
|
"Field `{field_name}` is pretokenized. This is not authorized for delete."
|
|
)))
|
|
}
|
|
Value::Array(_) => {
|
|
return Err(exceptions::PyValueError::new_err(format!(
|
|
"Field `{field_name}` is array type not deletable."
|
|
)))
|
|
}
|
|
Value::Object(_) => {
|
|
return Err(exceptions::PyValueError::new_err(format!(
|
|
"Field `{field_name}` is json object type not deletable."
|
|
)))
|
|
},
|
|
Value::Bool(b) => Term::from_field_bool(field, b),
|
|
Value::IpAddr(i) => Term::from_field_ip_addr(field, i)
|
|
};
|
|
Ok(self.inner()?.delete_term(term))
|
|
}
|
|
|
|
/// If there are some merging threads, blocks until they all finish
|
|
/// their work and then drop the `IndexWriter`.
|
|
///
|
|
/// This will consume the `IndexWriter`. Further accesses to the
|
|
/// object will result in an error.
|
|
pub fn wait_merging_threads(&mut self) -> PyResult<()> {
|
|
self.take_inner()?.wait_merging_threads().map_err(to_pyerr)
|
|
}
|
|
}
|
|
|
|
/// Create a new index object.
|
|
///
|
|
/// Args:
|
|
/// schema (Schema): The schema of the index.
|
|
/// path (str, optional): The path where the index should be stored. If
|
|
/// no path is provided, the index will be stored in memory.
|
|
/// reuse (bool, optional): Should we open an existing index if one exists
|
|
/// or always create a new one.
|
|
///
|
|
/// If an index already exists it will be opened and reused. Raises OSError
|
|
/// if there was a problem during the opening or creation of the index.
|
|
#[pyclass(module = "tantivy.tantivy")]
|
|
pub(crate) struct Index {
|
|
pub(crate) index: tv::Index,
|
|
reader: tv::IndexReader,
|
|
}
|
|
|
|
#[pymethods]
|
|
impl Index {
|
|
#[staticmethod]
|
|
fn open(path: &str) -> PyResult<Index> {
|
|
let index = tv::Index::open_in_dir(path).map_err(to_pyerr)?;
|
|
|
|
Index::register_custom_text_analyzers(&index);
|
|
|
|
let reader = index.reader().map_err(to_pyerr)?;
|
|
Ok(Index { index, reader })
|
|
}
|
|
|
|
#[new]
|
|
#[pyo3(signature = (schema, path = None, reuse = true))]
|
|
fn new(schema: &Schema, path: Option<&str>, reuse: bool) -> PyResult<Self> {
|
|
let index = match path {
|
|
Some(p) => {
|
|
let directory = MmapDirectory::open(p).map_err(to_pyerr)?;
|
|
if reuse {
|
|
tv::Index::open_or_create(directory, schema.inner.clone())
|
|
} else {
|
|
tv::Index::create(
|
|
directory,
|
|
schema.inner.clone(),
|
|
tv::IndexSettings::default(),
|
|
)
|
|
}
|
|
.map_err(to_pyerr)?
|
|
}
|
|
None => tv::Index::create_in_ram(schema.inner.clone()),
|
|
};
|
|
|
|
Index::register_custom_text_analyzers(&index);
|
|
|
|
let reader = index.reader().map_err(to_pyerr)?;
|
|
Ok(Index { index, reader })
|
|
}
|
|
|
|
/// Create a `IndexWriter` for the index.
|
|
///
|
|
/// The writer will be multithreaded and the provided heap size will be
|
|
/// split between the given number of threads.
|
|
///
|
|
/// Args:
|
|
/// overall_heap_size (int, optional): The total target heap memory usage of
|
|
/// the writer. Tantivy requires that this can't be less
|
|
/// than 3000000 *per thread*. Lower values will result in more
|
|
/// frequent internal commits when adding documents (slowing down
|
|
/// write progress), and larger values will results in fewer
|
|
/// commits but greater memory usage. The best value will depend
|
|
/// on your specific use case.
|
|
/// num_threads (int, optional): The number of threads that the writer
|
|
/// should use. If this value is 0, tantivy will choose
|
|
/// automatically the number of threads.
|
|
///
|
|
/// Raises ValueError if there was an error while creating the writer.
|
|
#[pyo3(signature = (heap_size = 128_000_000, num_threads = 0))]
|
|
fn writer(
|
|
&self,
|
|
heap_size: usize,
|
|
num_threads: usize,
|
|
) -> PyResult<IndexWriter> {
|
|
let writer = match num_threads {
|
|
0 => self.index.writer(heap_size),
|
|
_ => self.index.writer_with_num_threads(num_threads, heap_size),
|
|
}
|
|
.map_err(to_pyerr)?;
|
|
let schema = self.index.schema();
|
|
Ok(IndexWriter {
|
|
inner_index_writer: Some(writer),
|
|
schema,
|
|
})
|
|
}
|
|
|
|
/// Configure the index reader.
|
|
///
|
|
/// Args:
|
|
/// reload_policy (str, optional): The reload policy that the
|
|
/// IndexReader should use. Can be `Manual` or `OnCommit`.
|
|
/// num_warmers (int, optional): The number of searchers that the
|
|
/// reader should create.
|
|
#[pyo3(signature = (reload_policy = RELOAD_POLICY, num_warmers = 0))]
|
|
fn config_reader(
|
|
&mut self,
|
|
reload_policy: &str,
|
|
num_warmers: usize,
|
|
) -> Result<(), PyErr> {
|
|
let reload_policy = reload_policy.to_lowercase();
|
|
let reload_policy = match reload_policy.as_ref() {
|
|
"commit" => tv::ReloadPolicy::OnCommitWithDelay,
|
|
"on-commit" => tv::ReloadPolicy::OnCommitWithDelay,
|
|
"oncommit" => tv::ReloadPolicy::OnCommitWithDelay,
|
|
"manual" => tv::ReloadPolicy::Manual,
|
|
_ => return Err(exceptions::PyValueError::new_err(
|
|
"Invalid reload policy, valid choices are: 'manual' and 'OnCommit'"
|
|
))
|
|
};
|
|
let builder = self.index.reader_builder();
|
|
let builder = builder.reload_policy(reload_policy);
|
|
let builder = if num_warmers > 0 {
|
|
builder.num_warming_threads(num_warmers)
|
|
} else {
|
|
builder
|
|
};
|
|
|
|
self.reader = builder.try_into().map_err(to_pyerr)?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Returns a searcher
|
|
///
|
|
/// This method should be called every single time a search query is performed.
|
|
/// The same searcher must be used for a given query, as it ensures the use of a consistent segment set.
|
|
fn searcher(&self) -> Searcher {
|
|
Searcher {
|
|
inner: self.reader.searcher(),
|
|
}
|
|
}
|
|
|
|
/// Check if the given path contains an existing index.
|
|
/// Args:
|
|
/// path: The path where tantivy will search for an index.
|
|
///
|
|
/// Returns True if an index exists at the given path, False otherwise.
|
|
///
|
|
/// Raises OSError if the directory cannot be opened.
|
|
#[staticmethod]
|
|
fn exists(path: &str) -> PyResult<bool> {
|
|
let directory = MmapDirectory::open(path).map_err(to_pyerr)?;
|
|
tv::Index::exists(&directory).map_err(to_pyerr)
|
|
}
|
|
|
|
/// The schema of the current index.
|
|
#[getter]
|
|
fn schema(&self) -> Schema {
|
|
let schema = self.index.schema();
|
|
Schema { inner: schema }
|
|
}
|
|
|
|
/// Update searchers so that they reflect the state of the last .commit().
|
|
///
|
|
/// If you set up the the reload policy to be on 'commit' (which is the
|
|
/// default) every commit should be rapidly reflected on your IndexReader
|
|
/// and you should not need to call reload() at all.
|
|
fn reload(&self) -> PyResult<()> {
|
|
self.reader.reload().map_err(to_pyerr)
|
|
}
|
|
|
|
/// Parse a query
|
|
///
|
|
/// Args:
|
|
/// query: the query, following the tantivy query language.
|
|
///
|
|
/// default_fields_names (List[Field]): A list of fields used to search if no
|
|
/// field is specified in the query.
|
|
///
|
|
/// field_boosts: A dictionary keyed on field names which provides default boosts
|
|
/// for the query constructed by this method.
|
|
///
|
|
/// fuzzy_fields: A dictionary keyed on field names which provides (prefix, distance, transpose_cost_one)
|
|
/// triples making queries constructed by this method fuzzy against the given fields
|
|
/// and using the given parameters.
|
|
/// `prefix` determines if terms which are prefixes of the given term match the query.
|
|
/// `distance` determines the maximum Levenshtein distance between terms matching the query and the given term.
|
|
/// `transpose_cost_one` determines if transpositions of neighbouring characters are counted only once against the Levenshtein distance.
|
|
#[pyo3(signature = (query, default_field_names = None, field_boosts = HashMap::new(), fuzzy_fields = HashMap::new()))]
|
|
pub fn parse_query(
|
|
&self,
|
|
query: &str,
|
|
default_field_names: Option<Vec<String>>,
|
|
field_boosts: HashMap<String, tv::Score>,
|
|
fuzzy_fields: HashMap<String, (bool, u8, bool)>,
|
|
) -> PyResult<Query> {
|
|
let parser = self.prepare_query_parser(
|
|
default_field_names,
|
|
field_boosts,
|
|
fuzzy_fields,
|
|
)?;
|
|
|
|
let query = parser.parse_query(query).map_err(to_pyerr)?;
|
|
|
|
Ok(Query { inner: query })
|
|
}
|
|
|
|
/// Parse a query leniently.
|
|
///
|
|
/// This variant parses invalid query on a best effort basis. If some part of the query can't
|
|
/// reasonably be executed (range query without field, searching on a non existing field,
|
|
/// searching without precising field when no default field is provided...), they may get turned
|
|
/// into a "match-nothing" subquery.
|
|
///
|
|
/// Args:
|
|
/// query: the query, following the tantivy query language.
|
|
///
|
|
/// default_fields_names (List[Field]): A list of fields used to search if no
|
|
/// field is specified in the query.
|
|
///
|
|
/// field_boosts: A dictionary keyed on field names which provides default boosts
|
|
/// for the query constructed by this method.
|
|
///
|
|
/// fuzzy_fields: A dictionary keyed on field names which provides (prefix, distance, transpose_cost_one)
|
|
/// triples making queries constructed by this method fuzzy against the given fields
|
|
/// and using the given parameters.
|
|
/// `prefix` determines if terms which are prefixes of the given term match the query.
|
|
/// `distance` determines the maximum Levenshtein distance between terms matching the query and the given term.
|
|
/// `transpose_cost_one` determines if transpositions of neighbouring characters are counted only once against the Levenshtein distance.
|
|
///
|
|
/// Returns a tuple containing the parsed query and a list of errors.
|
|
///
|
|
/// Raises ValueError if a field in `default_field_names` is not defined or marked as indexed.
|
|
#[pyo3(signature = (query, default_field_names = None, field_boosts = HashMap::new(), fuzzy_fields = HashMap::new()))]
|
|
pub fn parse_query_lenient(
|
|
&self,
|
|
query: &str,
|
|
default_field_names: Option<Vec<String>>,
|
|
field_boosts: HashMap<String, tv::Score>,
|
|
fuzzy_fields: HashMap<String, (bool, u8, bool)>,
|
|
py: Python,
|
|
) -> PyResult<(Query, Vec<PyObject>)> {
|
|
let parser = self.prepare_query_parser(
|
|
default_field_names,
|
|
field_boosts,
|
|
fuzzy_fields,
|
|
)?;
|
|
|
|
let (query, errors) = parser.parse_query_lenient(query);
|
|
let errors = errors.into_iter().map(|err| err.into_py(py)).collect();
|
|
|
|
Ok((Query { inner: query }, errors))
|
|
}
|
|
}
|
|
|
|
impl Index {
|
|
fn prepare_query_parser(
|
|
&self,
|
|
default_field_names: Option<Vec<String>>,
|
|
field_boosts: HashMap<String, tv::Score>,
|
|
fuzzy_fields: HashMap<String, (bool, u8, bool)>,
|
|
) -> PyResult<tv::query::QueryParser> {
|
|
let schema = self.index.schema();
|
|
|
|
let default_fields = if let Some(default_field_names) =
|
|
default_field_names
|
|
{
|
|
default_field_names.iter().map(|field_name| {
|
|
let field = schema.get_field(field_name).map_err(|_err| {
|
|
exceptions::PyValueError::new_err(format!(
|
|
"Field `{field_name}` is not defined in the schema."
|
|
))
|
|
})?;
|
|
|
|
let field_entry = schema.get_field_entry(field);
|
|
if !field_entry.is_indexed() {
|
|
return Err(exceptions::PyValueError::new_err(
|
|
format!("Field `{field_name}` is not set as indexed in the schema.")
|
|
));
|
|
}
|
|
|
|
Ok(field)
|
|
}).collect::<PyResult<_>>()?
|
|
} else {
|
|
schema
|
|
.fields()
|
|
.filter(|(_, field_entry)| field_entry.is_indexed())
|
|
.map(|(field, _)| field)
|
|
.collect()
|
|
};
|
|
|
|
let mut parser =
|
|
tv::query::QueryParser::for_index(&self.index, default_fields);
|
|
|
|
for (field_name, boost) in field_boosts {
|
|
let field = schema.get_field(&field_name).map_err(|_err| {
|
|
exceptions::PyValueError::new_err(format!(
|
|
"Field `{field_name}` is not defined in the schema."
|
|
))
|
|
})?;
|
|
parser.set_field_boost(field, boost);
|
|
}
|
|
|
|
for (field_name, (prefix, distance, transpose_cost_one)) in fuzzy_fields
|
|
{
|
|
let field = schema.get_field(&field_name).map_err(|_err| {
|
|
exceptions::PyValueError::new_err(format!(
|
|
"Field `{field_name}` is not defined in the schema."
|
|
))
|
|
})?;
|
|
parser.set_field_fuzzy(field, prefix, distance, transpose_cost_one);
|
|
}
|
|
|
|
Ok(parser)
|
|
}
|
|
|
|
fn register_custom_text_analyzers(index: &tv::Index) {
|
|
let analyzers = [
|
|
("ar_stem", Language::Arabic),
|
|
("da_stem", Language::Danish),
|
|
("nl_stem", Language::Dutch),
|
|
("fi_stem", Language::Finnish),
|
|
("fr_stem", Language::French),
|
|
("de_stem", Language::German),
|
|
("el_stem", Language::Greek),
|
|
("hu_stem", Language::Hungarian),
|
|
("it_stem", Language::Italian),
|
|
("no_stem", Language::Norwegian),
|
|
("pt_stem", Language::Portuguese),
|
|
("ro_stem", Language::Romanian),
|
|
("ru_stem", Language::Russian),
|
|
("es_stem", Language::Spanish),
|
|
("sv_stem", Language::Swedish),
|
|
("ta_stem", Language::Tamil),
|
|
("tr_stem", Language::Turkish),
|
|
];
|
|
|
|
for (name, lang) in &analyzers {
|
|
let an = TextAnalyzer::builder(SimpleTokenizer::default())
|
|
.filter(RemoveLongFilter::limit(40))
|
|
.filter(LowerCaser)
|
|
.filter(Stemmer::new(*lang))
|
|
.build();
|
|
index.tokenizers().register(name, an);
|
|
}
|
|
}
|
|
}
|